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A New Look at the Perfectly Matched Layer
(PML) Concept for the Reflectionless
Absorption of Electromagnetic Waves

R. Mittra, Fellow, IEEE, and U. Pekel

Abstract— The Perfectly Matched Layer (PML) concept has
been introduced recently by Berenger with the objective of devel-
oping an absorbing boundary condition for the Finite Difference
Time Domain (FDTD) method. In its original formulation, the
PML approach is based on the splitting of the field components
into two sub-components which are weighted with different con-
stituent parameters. The objectives of this paper are to take a
critical ook at the PML concept with a view to providing some
interpretations of the same; to examine the Maxwellian nature of
the PML layer; to present a version of the PML approach that
does not involve the “splitting” and the resulting six components
for each of the electric and magnetic fields in the PML layer;
and, finally, to compare it with other approaches, e.g., co-ordinate
scaling.

1. INTRODUCTION

ERENGER [1] has recently introduced a novel concept

for designing a “Perfectly Matched Layer™ (PML). that
provides reflectionless absorption of electromagnetic waves
when they impinge upon this layer (also. see Katz er al. [2]).
A close examination of the PML concept has raised several
important questions that must be answered satisfactorily in
order that a thorough understanding of this concept can be
developed and refined versions of the PML layer can be
synthesized. Some of these questions are:

1) Why is it necessary in the PML approach to decom-
pose (split) each of the components of the electric and
magnetic fields into two constituent parts at the cost of
increasing the memory requirements?

Since two different constitutive parameters are assigned
to each of these split field components, can the PML
layer be represented in terms of the conventional com-
plex [e] and [u] tensors?

Are Maxwell’s equations satisfied in the PML medium?
If not, what equations do the PML fields satisfy?

Is the PML layer active or passive, i.e., does the PML
layer have negative conductivities or implicit sources
embedded in it?

Is the PML concept equivalent to co-ordinate scaling
approach presented in [3], [4]?

3)

+)

5)

Obviously. the answers to above questions are important so
that we can be sure that the continuity equations, as dictated by
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Maxwell’s curl equations. are still applicable at the interfaces
between free-space and the PML layer, and that the field
solution generated by using the PML is going to be stable
as well as uncorrupted by spurious solutions. We hope to shed
some light into the above questions through the exposition of
the PML concept as presented below.

II. REFORMULATION OF THE PML EQUATIONS

The principal strategy of the PML approach is to devise
a layer such that a plane wave incident at an arbitrary angle
from the free-space upon a semi-infinite PML region is totally
transmitted into the PML region without any reflection in
the free space region. The original, split-form of the PML
equations in the time-domain are given by [L]:
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We note in the above equations that after the field components
are split, their respective sub-components are “‘weighted” by
different constitutive parameters. raising the question whether
the PML medium can be described by conventional 3 x 3
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constitutive parameter tensors. To answer this question we
eliminate all of the split fields (H,, E,, - - -) from (1), (2) and
replace them by the conventional ones (H,, E,,---) instead
(for example, we solve (la) to get H,, = —jk,E,/(c} +
Jwi)). The unsplit equations read:
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where, for convenience, we have used a frequency domain
representation, and the subscripts 1, 2, 3 of the electric and
magnetic conductivities (¢’s) can be associated with the y-, 2-,
and z-directions, respectively (i.e., 01 < 0y, 09 > 0,03 <
0y, etc ---). We note, immediately, that in addition to the
regular terms arising from the Maxwell’s curl equations in an
anisotropic medium with a uniaxial, 3 x 3 conductivity tensor,
there are terms involving the differences of the conductivities,
€.g. (o1 — 09), etc., appearing on the right-hand-sides of the
above equations, which must be interpreted as source terms,
albeit dependent on the excitation (i.e., the £ and H fields),
that are distributed in the entire semi-infinite PML region.
We must therefore conclude that due to the presence of the
distributed dependent sources on the right-hand-sides of (3a)
w0 (4c), the PML medium ceases to be passive, even if the o’s
are non-negative.

Next, we observe that if we impose the “PML impedance
matching condition”

g1
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then (3) and (4) become “dual” equations, Without loss of
generality, we can represent the wave propagating in the PML
medium as a linear combination of TE-to-z and TM-to-z

modes, as defined in [5] by:
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where the superscripts “e” and “m” denote the TE and TM
modes, respectively. In order to be able to match the fields at
the interface of the free-space and the PML region, we must
impose the following constraints on the complex coefficients
az™, ay™, by™, and by™ associated with the tangential -
and y-directions in (6):

e,m
as v

by™ =by™, ay™ = —moby ™. (7)
Furthermore, as a consequence of the phase-matching condi-
tion which has to be satisfied at the interface between the two
regions, the tangential wave numbers k, and k, in the PML
region must be equal to their counterparts in the free-space
region, which implies that k, = kg sin 8 cos ¢ = kyo,ky =
ko sin @ sin ¢ = ky. In addition, to ensure a proper decay of
the wave in the PML region along the preferred z-direction,
and thereby produce the desired absorption effect, the wave
number k, in the PML region must have the form %k, =
ko(1—jkyr;) cos 8. The positive-real number k.., can be chosen
such that a pre-specified value of attenuation is achieved for
a given value of the transmission (= incidence) angle 6.

We now substitute the field representation in the PML
region, as postulated in (6) in the form of a linear combination
of TE-to-z and TM-to-z fields, into (3a) — (4c). After some
algebraic manipulations, we arrive at the conditions:

*
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It may be verified that the above constraints are necessary
in order for the field solution to simultaneously satisfy (6),
(3), and (4). Of course, the o values must be permuted as the
direction of the normal is changed from z to z to y. Also, at the
edges of the problem domain, where two faces come together,
one may simply “overlap” the two constitutive parameters
pertaining to the two preferred directions of propagation,
while maintaining a zero conductivity in the third dimension.
Likewise, at the corner regions of the problem domain, one
may include all three conductivities in the governing equa-
tions since one is effectively faced with three directions of
propagation. We should point out that the corner regions play
a pivotal role, since the PML layer itself does not absorb any
of the transverse component of the power entering into the
layer, and this task must be handled by the corner regions.
Using (8), (9), the frequency-domain relations (3a) — (4¢)
for the PML medium may be rewritten in a simpler form as:
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(11b)
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1

jweok, =3k, H, — jk, H,. (11c)

The above six equations are identical to those presented in a
recent investigation of perfectly matched absorbing boundary
conditions based on anisotropic lossy mapping of space [3],
[4]. Tt is evident that (10), (11) can be obtained from conven-
tional Maxwell’s curl equations by introducing the complex
spatial variable 2’. which is related to the spatial variable z by

2 :z(l~,j 7 > :z(l~ji>
wey Wity

assuming that the z-direction is the direction of propagation,
and the »- and y-directions are the tangential directions in
the PML medium. This leads us to conclude that the space-
mapping procedure leads to non-Maxwellian fields as well
(i.e., the fields do not satisfy the two standard Maxwell curl
equations). In addition, we can readily show by using (9) in
(10). (11) that the latter reduce to Maxwell’s curl equations in
Jree-space, which is a surprising result since we are dealing
with a medium with a uniaxial conductivity, and the fields in
this medium should not be satisfying Maxwell’s equations in
free-space.

Although we will not provide the details here because of
lack of space, it is also possible to start the entire procedure
outlined above by deleting the dependent source terms in (3),
(4) at the outset, such that the above equations are entirely
Maxwellian. If we require the field solution in the PML region
to still have the same form as before, we obtain a totally
different uniaxial medium, whose constitutive parameters are
3 x 3 (diagonal) matrices with negative o3 and o3, with
o1 = 09>0,017 = 045 >0, and whose g3 and u3 are also
different from ¢, and j1. This result is consistent with that
reported by Sacks et al. [6], and leads to the conclusion that
a Maxwellian PML medium must be active with negative ¢
in the normal direction.

We are currently studying the problem of adapting the PML
approach to FEM in the frequency domain. We find that this is
not a particularly straightforward task if we desire to retain the
conventional FEM formulation, using either the E or H fields
only. This is because the usual curl-curl equations for either E
or H can no longer be derived from (3). (4), and the presence
of the source terms in these equations exacerbate the problem.!
We should also be cautious when dealing with non-Maxwellian
equations. or with media that have negative conductivities,
since, to the best of our knowledge, the stability criteria for
such media have not been established as yet, and we should
be vigilant for the growth of round-off errors that can create

(12)

I An approach to alleviating this problem has recently been reported by the
authors [7]. [8]
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long-term instability problems. We have, in tact, observed such
instabulities for inhomogeneous, layered dielectric regions, and
are currently investigating the same.

Before closing this discussion we should mention that while
the forms of the equations in (3), (4), which are the unsplit
versions of (1), (2), deal with fewer field components than the
split version equations, they require second- rather than first-
order time derivatives. This, of course, is also true of the scaled
version of the PML equations given in (10), (11), which, as
stated above, are identical to (3), (4).

III. CONCLUSION

We draw the following conclusions on the basis of our
investigation of the PML approach: 1) The PML equations
of Berenger can be transformed into unsplit versions; 2) The
PML equations are non-Maxwellian as they include dependent
sources, that render the medium active; 3) The fields in the
PML region have been shown to satisfy the Maxwell's equa-
tions corresponding to free-space, even though the medium is
fossy and uniaxially conducting; 4) the same equations have
been found to be identical to those obtained previously in a
study based on the concept of anisotropic lossy mapping of
space by coordinate stretching; 5) A Maxwellian PML-like
medium, originally proposed by Sacks et al.. is different from
the Berenger PML medium, not only because its conductivity
tensor has the non-zero term in the normal direction, but also
because this term is negative, suggesting an active medium of
a different type; 6) the corner regions play a pivotal role in
absorbing transversely-directed power in the PML layer and
must be designed carefully; and, finally, 7) instabilities have
been found when the region under investigation has layered
inhomogeneities.
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